Interspecific comparison of the mechanical properties of mussel byssus.
نویسندگان
چکیده
Byssally tethered mussels are found in a variety of habitats, including rocky intertidal, salt marsh, subtidal, and hydrothermal vents. One key to the survival of mussels in these communities is a secure attachment, achieved by the production of byssal threads. Although many studies have detailed the unique biomechanical properties of byssal threads, only a few prevalent species have been examined. This study assesses the variation in the mechanical properties of byssus in a broad range of mussel species from diverse environments, including intertidal and subtidal Mytilus edulis, Modiolus modiolus, Geukensia demissa, Bathymodiolus thermophilus, and Dreissena polymorpha. A tensometer was used to measure quasi-static and dynamic mechanical properties of individual threads, and several aspects of morphology were quantified. The results indicate that thread mechanical properties vary among mussel species, and several novel properties were observed. For example, of the species examined, D. polymorpha threads were the strongest, stiffest, least resilient, and fastest to recover after partial deformation. Threads of M. modiolus were characterized by the presence of two distinct yield regions prior to tensile failure. This comparative study not only provides insight into the ecological limitations and evolution of mussels, but also suggests new models for the design of novel biomimetic polymers.
منابع مشابه
Rapid self-assembly of complex biomolecular architectures during mussel byssus biofabrication
Protein-based biogenic materials provide important inspiration for the development of high-performance polymers. The fibrous mussel byssus, for instance, exhibits exceptional wet adhesion, abrasion resistance, toughness and self-healing capacity-properties that arise from an intricate hierarchical organization formed in minutes from a fluid secretion of over 10 different protein precursors. How...
متن کاملThe staying power of adhesion-associated antioxidant activity in Mytilus californianus.
The California mussel, Mytilus californianus, adheres in the highly oxidizing intertidal zone with a fibrous holdfast called the byssus using 3, 4-dihydroxyphenyl-l-alanine (DOPA)-containing adhesive proteins. DOPA is susceptible to oxidation in seawater and, upon oxidation, loses adhesion. Successful mussel adhesion thus depends critically on controlling oxidation and reduction. To explore how...
متن کاملByssus attachment strength of two mytilids in mono-specific and mixed-species mussel beds.
The mussel Xenostrobus securis is endemic to the brackish waters of New Zealand and Australia, but has successfully invaded the inner Galician Rías of NW Spain, where it coexists with the indigenous mussel Mytilus galloprovincialis. In this laboratory study, the plasticity of the byssus attachment strength of two mytilids was compared by manipulating substratum, salinity, and bed assembly. M. g...
متن کاملMechanical design of mussel byssus: material yield enhances attachment strength
The competitive dominance of mussels in the wave-swept rocky intertidal zone is in part due to their ability to maintain a secure attachment. Mussels are tethered to the substratum by a byssus composed of numerous extracellular, collagenous threads secreted by the foot. Each byssal thread has three serially arranged parts: a corrugated proximal region, a smooth distal region and an adhesive pla...
متن کاملHyperunstable matrix proteins in the byssus of Mytilus galloprovincialis.
The marine mussel Mytilus galloprovincialis is tethered to rocks in the intertidal zone by a holdfast known as the byssus. Functioning as a shock absorber, the byssus is composed of threads, the primary molecular components of which are collagen-containing proteins (preCOLs) that largely dictate the higher order self-assembly and mechanical properties of byssal threads. The threads contain addi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biological bulletin
دوره 211 3 شماره
صفحات -
تاریخ انتشار 2006